Using Chemical Tracers to Assess Ocean Models

نویسنده

  • Matthew H. England
چکیده

Chemical tracers can be used to assess the simulated circulation in ocean models. Tracers that have been used in this context include tritium, chlorofluorocarbons, natural and bomb-produced radiocarbon, and to a lesser extent, oxygen, silicate, phosphate, isotopes of organic and inorganic carbon compounds, and certain noble gases (e.g., helium and argon). This paper reviews the use of chemical tracers in assessing the circulation and flow patterns in global and regional ocean models. It will be shown that crucial information can be derived from chemcial tracers that cannot be obtained from temperature-salinity (T-S) alone. In fact, it turns out that a model with a good representation of T-S can have significant errors in simulated circulation, so checking a model’s ability to capture chemical tracer patterns is vital. Natural chemical tracers such as isotopes of carbon, argon, and oxygen are useful for examining the model representation of old water masses, such as North Pacific and Circumpolar Deep Water. Anthropogenic or transient tracers, such as tritium, chlorofluorocarbons, and bomb-produced C, are best suited for analyzing model circulation over decadal timescales, such as thermocline ventilation, the renewal of Antarctic Intermediate Water, and the ventilation pathways of North Atlantic Deep Water and Antarctic Bottom Water. Tracer model studies have helped to reveal inadequacies in the model representation of certain water mass formation processes, for example, convection, downslope flows, and deep ocean currents. They show how coarse models can chronically exaggerate the spatial scales of openocean convection and deep currents while underestimating deep flow rates and diffusing downslope flows with excessive lateral mixing. Higher-resolution models typically only resolve thermocline ventilation because of shorter integration times, and most resort to high-latitude T-S restoring to simulate reasonable interior water mass characteristics. This can be seen to result in spuriously weak chemical tracer uptake at high latitudes due to suppressed convective overturn and vertical motion. Overall, the simulation of chemical tracers is strongly recommended in model assessment studies and as a tool for analyzing water mass mixing and transformation in ocean models. We argue that a cost-effective approach is to simulate natural radiocarbon to assess long-timescale processes, and CFCs for decadal to interdecadal ocean ventilation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

منشأیابی منابع رسوب: ارتباط بین فعالیت‌‌های آنزیمی خاک و رسوب

Sediment sources fingerprinting is needed as an autonomous tool for erosion prediction, validation of soil erosion models, monitoring of sediment budget and consequently for selecting soil conservation practices and sediment control methods at the catchment scale. Apportioning of eroded-soil into multiple sources using natural tracers is an integrated approach in soil erosion and sediment studi...

متن کامل

A computational framework for simulation of biogeochemical tracers in the ocean

[1] A novel computational framework is introduced for the efficient simulation of chemical and biological tracers in ocean models. The framework is based on the ‘‘transport matrix’’ formulation, a scheme for capturing the complex three-dimensional transport of tracers in a general circulation model (GCM) as a sparse matrix, thus reducing the task of simulating tracers to a sequence of simple ma...

متن کامل

Accelerated simulation of passive tracers in ocean circulation models

A novel strategy is proposed for the efficient simulation of geochemical tracers in ocean models. The method captures the tracer advection and diffusion in a general circulation model (GCM) without any alteration (or even knowledge) of the GCM code. In comparison with offline tracer models, the proposed method is considerably more efficient and automatically includes all parameterizations of un...

متن کامل

Complex functionality with minimal computation: Promise and pitfalls of reducedtracer ocean biogeochemistry models

Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a ...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001